# A Structural Investigation On Multistoried Structures With Dynamic Performance In A Seismic Zone Using Different Bracings

## Dr. J.Rex<sup>1</sup>, Odela Rakesh<sup>2</sup>, Shyamala Bhoomesh<sup>3</sup>

<sup>1</sup>Associate Professor Department of Civil Engineering, Malla Reddy Engineering College, Hyderabad, 500100.
 <sup>2</sup>PG Student Department of Civil Engineering, Malla Reddy Engineering College, Hyderabad, 500100.
 <sup>3</sup>Assistant Professor Department of Civil Engineering, Malla Reddy Engineering College, Hyderabad, 500100

Abstract:- Bracing is a common method used by multi-story buildings to counteract the lateral stresses that are applied by the environment. In a frame construction, the use of bracing is a method that is both highly effective and costefficient in resisting horizontal forces. Structures that have their frames braced are meant to be more resistant to the effects of earthquakes and wind loads. Because of their exceptional rigidity, braced frames are well suited for seismic retrofitting. Steel members are almost always used in the construction of braced frames. Vertical loads are supported by the structural parts of the building, such as beams and columns, whereas lateral loads are supported by the bracing system. By using braced frames, it is possible to minimize the amount of side displacement as well as the bending moment in the columns. Steel bracing is adaptable and can be constructed to fulfill the needed strength and stiffness requirements. In addition to being cost-effective, quick to install, and taking up less space than wood bracing, steel bracing is also gentle on the environment. It makes it possible to obtain a large increase in lateral stiffness while simultaneously increasing weight just a little. This indicates that preexisting constructions that have low side stiffness may considerably benefit from incorporating it. Bracings are given in RCC constructions in order to withstand lateral stresses such as those caused by earthquakes and wind pressure. There are several different kinds of conventional bracing that may be employed. The purpose of this examination is to analyze the dynamic behavior of a multi-story building located in a seismic zone and equipped with a variety of bracings. The work being done right now is on a multi-story structure that is situated in Zone V, and it is being done on three distinct stories: 12, 20, and 30. The research was carried out using X, K, V, and O bracings, as well as X-O, V-O, and K-O bracings for each individual tale. FEM uses SAP 2000 to perform a non-linear time history analysis to complete the research. In addition, we established a number of factors, such as tale displacement and story drift. When compared to other sorts of combinations of bracing and individual bracings, it has been shown that the K-O bracing combination results in 12% less narrative displacement and 11% less story drift.

Keywords: Tall buildings, O-grid, K-grid, Dynamic Analysis

## 1. Introduction

Each year, thousands of earthquakes occur all over the earth's surface. Strong- motion earthquakes are caused by those who are interested in structural engineering. Over 2.5 million people have died due to earthquakes since the turn of the century, despite their social and economic effects, which means that large earthquakes rank among the top few natural catastrophes in terms of the number of lives lost. A better understanding of seismic engineering is the result of this. Constructions are better equipped to resist tremendous stresses and reduce the devastating loss of life. There is a typical use of frames in public buildings in seismically active areas that house 2 large crowds. In order to lower the risk of death and increase the ability of critical facilities to function during and after an earthquake, this work will contribute to the development of earthquake-resistant frames. An earthquake can be described as an energy exchange process between the ground and the structure from an

energetic standpoint. In order to be earthquake resistant, a structure must be able to store and disperse seismic energy safely. Defined in this way, an excellent structural design manages how input energy is transformed by designing non-structural and structural damage in a way that prevents collapse. This thesis investigates a novel form of seismic frame bracing system based on this theory. When it comes to the frame's energy dissipation capability and yield sequence, stiffness and strength significantly impact it. We examine energy dissipation techniques and the torsional coupling aspect of Steel 3 frames in this chapter. Lastly, the scope and aims of this research are summarised in the final section.

#### Need of the Study

Bracing is a common technique used in multi-story buildings to counteract external lateral stresses. One very efficient and economical way to resist horizontal forces in a frame construction is to use bracing. Braced frame structures are made to withstand seismic and wind stresses. Braced frames are the best choice for seismic retrofitting due to their great rigidity. Steel members are almost often used to create braced frames. While the bracing system bears lateral loads, structural components like beams and columns carry vertical loads. Column bending moment and side displacement can be reduced by using braced frames.

Steel bracing is more space-efficient, affordable, and simple to install than wood bracing. It may also be made to satisfy specific specifications for stiffness and strength. It makes it possible to improve lateral stiffness significantly while adding the least amount of weight. That implies that it can be very helpful for current constructions that have low side stiffness. Bracings are used in RCC constructions to withstand lateral stresses like wind pressure and earthquakes.

Structures are constructed with braced frames to withstand seismic forces and wind loads. Because of their high rigidity, braced frames are perfect for seismic retrofit. Numerous traditional bracing techniques have been employed up to this point to achieve highly successful and economical outcomes. Certain bracings, such as the K bracings, have been found to be ineffective when utilized in seismically active zones, such as zone V.

In the past, there was just one kind of braces utilized. For extremely efficient and economical results, a combination of bracings may be more appropriate. The primary requirements are that the structure be affordable, that bracing can be easily installed, and that the brace should have lateral stiffness. In order to meet those requirements, a novel kind of bracing is presented in these experiments, coupled with a bracing combination.

#### 2. Objective of the study

The current effort is focused on finding a practical means of lessening the reactivity of earthquake-prone constructions. Particular emphasis is placed on practical upgrades for RCC structural constructions. The following goals are the focus of the current work:

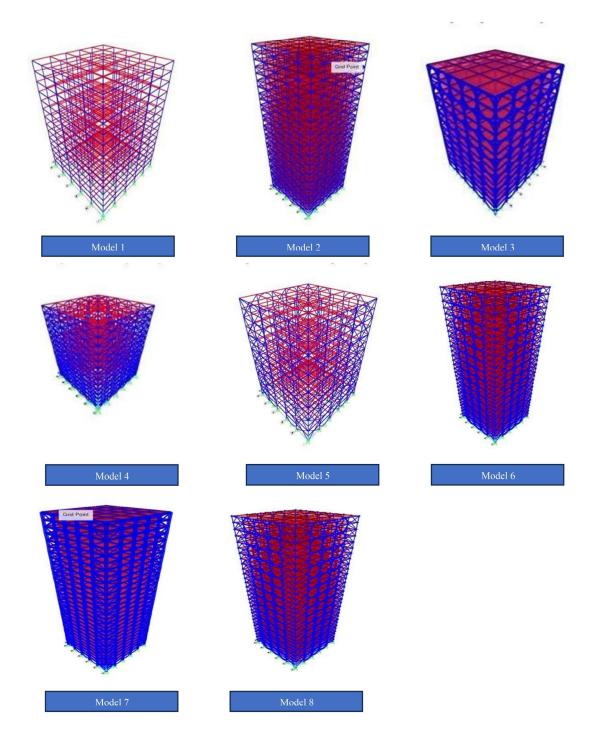
- > Using nonlinear time history analysis, the seismic needs of ordinary R.C. structures were studied.
- The primary goal of the thesis is to determine which bracing types—Ogrid, X-grid, inverted V grid, K grid, and combinations of O-X, O-K, and O-V grid—are the most effective and appropriate for withstanding lateral loads in order to minimize lateral displacements, minimize story drift, and increase the shear capacity of the RC frame.
- > A comparative analysis of roof displacement time periods has been conducted.

#### Scope of the Study

The goal of the current study is to illustrate the impact of the O-, K-, and O & K grid combinations. Methods of bracing symmetric high-rise buildings. The structure under investigation in this paper is a 12, 20, and 30 reinforced concrete moment-resistant frame that was designed using linear analysis for both seismic and gravity loads. The SAP 2000 software (CSI Ltd) analytical engine is used to conduct three nonlinear time history analyses in accordance with seismic code IS-1893:2016 in order to evaluate the structure. This thesis' main

objective is to offer insightful information on the state of high-performance brace development, with the aim that practicing engineers would embrace and use this method more frequently when creating new earthquake-resistant buildings.

## 3. Methods


This chapter outlines the methodology used to complete the dissertation. The geometrical features and analytical parameters of the three models for construction are shown in the upcoming chapter. The analytical approach employed for this study is the nonlinear dynamic time history analysis, which provides story vs. displacement curves of the structure. SAP 2000 software aids in the analysis and creation of the models.

#### Building models used in the study

The Layout of the plan having 5x5 bays of an equal length of 6m. The buildings considered are Reinforced ordinary concrete moment-resisting space frames of 12, 20 and 30 Storeys to account for the Nonlinear Behavior of Seismic demands. All these buildings have been analysed by the NLTHA method. The story height is kept uniform of 3 m for all kinds of building models below. The analysis illustrates the step-by-step procedure for the determination of forces.

The Plan configuration consists of

- 1. Model 1 Normal Building
- 2. Model 2 Building with K-brace
- 3. Model 3 Building with O-brace
- 4. Model 4 Building with X brace
- 5. Model 5 Building with V- brace
- 6. Model 6 Building with a combination of X-O brace
- 7. Model 7 Building with the combination of K-O brace
- 8. Model 8 Building with the combination of V-O brace



## 4. Results And Discussions

In this part, the result of each building will be obtained, and then the result will be comparative between building with in the following categories:

## **Story Displacement**

A graph was generated using the SAP 2000 software's output, showing the relationship between the building's number of stories (171) and displacement at intervals of equal magnitude. The plots in the below table show the displacement in the X direction for both. various bracings and bracing combinations.

The O grid displacement is higher than that of other types of bracings, as the below tables indicate. However, When O bracings are used in conjunction with other bracing types, the combination of In addition, bracings are less expensive than individual bracings.

#### **Results for 30 story building**

|          |               |          | STORY I  | DISPLACEME | NT in mm |           |           |           |
|----------|---------------|----------|----------|------------|----------|-----------|-----------|-----------|
| stories  | without brace | Brace X  | Brace O  | brace K    | brace V  | brace X-O | brace K-O | brace V-C |
| BASE     | 0             | 0        | 0        | 0          | 0        | 0         | 0         | 0         |
| story 1  | 1.18433       | 0.962588 | 1.186245 | 1.063878   | 0.951264 | 1.019105  | 1.096076  | 1.110335  |
| story 2  | 3.659398      | 2.657024 | 3.666028 | 3.052768   | 2.630254 | 3.03136   | 3.313695  | 3.357079  |
| story 3  | 6.675894      | 4.548662 | 6.68414  | 5.33874    | 4.507781 | 5.436636  | 5.965182  | 6.042419  |
| story 4  | 9.930297      | 6.534143 | 9.938462 | 7.737397   | 6.480419 | 8.052126  | 8.827485  | 8.937093  |
| story 5  | 13.29761      | 8.589323 | 13.30419 | 10.21047   | 8.523717 | 10.81278  | 11.80566  | 11.94585  |
| story 6  | 16.72417      | 10.70427 | 16.72829 | 12.7304    | 10.62755 | 13.68874  | 14.87313  | 15.04072  |
| story 7  | 20.18454      | 12.87151 | 20.18559 | 15.29729   | 12.7843  | 16.65979  | 18.0022   | 18.1952   |
| story 8  | 23.66423      | 15.08389 | 23.66172 | 17.89496   | 14.9867  | 19.70958  | 21.18719  | 21.40295  |
| story 9  | 27.15277      | 17.33419 | 27.14636 | 20.52411   | 17.22743 | 22.82272  | 24.40862  | 24.64557  |
| story 10 | 30.64088      | 19.61503 | 30.63018 | 23.16995   | 19.499   | 25.98476  | 27.66203  | 27.91812  |
| story 11 | 34.11938      | 21.91884 | 34.10417 | 25.83132   | 21.79376 | 29.18149  | 30.92943  | 31.20346  |
| story 12 | 37.57876      | 24.23783 | 37.55864 | 28.49403   | 24.10382 | 32.39906  | 34.2053   | 34.49567  |
| story 13 | 41.00894      | 26.564   | 40.98378 | 31.15499   | 26.4211  | 35.62384  | 37.47227  | 37.77802  |
| story 14 | 44.3993       | 28.88912 | 44.36869 | 33.80035   | 28.7373  | 38.84223  | 40.72344  | 41.04331  |
| story 15 | 47.73854      | 31.20475 | 47.70241 | 36.42492   | 31.04387 | 42.0409   | 43.94192  | 44.27508  |
| story 16 | 51.01476      | 33.50219 | 50.97272 | 39.01545   | 33.33206 | 45.20636  | 47.11938  | 47.46477  |
| story 17 | 54.21545      | 35.77256 | 54.1675  | 41.56504   | 35.59289 | 48.3255   | 50.23934  | 50.59614  |
| story 18 | 57.32745      | 38.00676 | 57.27318 | 44.06077   | 37.81718 | 51.38487  | 53.2921   | 53.65933  |
| story 19 | 60.33701      | 40.19547 | 60.27651 | 46.49413   | 39.99555 | 54.37158  | 56.26157  | 56.63832  |
| story 20 | 63.22976      | 42.32921 | 63.16258 | 48.85243   | 42.1184  | 57.27229  | 59.13676  | 59.522    |
| story 21 | 65.99075      | 44.39832 | 65.91709 | 51.12571   | 44.17601 | 60.07445  | 61.90203  | 62.29465  |
| story 22 | 68.6046       | 46.393   | 68.5234  | 53.30147   | 46.15848 | 62.765    | 64.54525  | 64.94405  |
| story 23 | 71.05483      | 48.30331 | 70.96755 | 55.36848   | 48.05578 | 65.33195  | 67.05128  | 67.45483  |
| story 24 | 73.32539      | 50.11924 | 73.23092 | 57.31434   | 49.85781 | 67.76279  | 69.40712  | 69.81389  |
| story 25 | 75.3994       | 51.83071 | 75.29814 | 59.12684   | 51.55437 | 70.04645  | 71.59829  | 72.00642  |
| story 26 | 77.26043      | 53.42762 | 77.15176 | 60.79373   | 53.13528 | 72.17138  | 73.6114   | 74.01891  |
| story 27 | 78.89349      | 54.89999 | 78.77784 | 62.30258   | 54.59045 | 74.1278   | 75.43335  | 75.83784  |
| story 28 | 80.28815      | 56.23847 | 80.16473 | 63.64297   | 55.91044 | 75.90549  | 77.05259  | 77.45159  |
| story 29 | 81.4459       | 57.43673 | 81.315   | 64.80949   | 57.08889 | 77.49547  | 78.46273  | 78.85374  |
| story 30 | 82.39951      | 58.50554 | 82.26017 | 65.82011   | 58.1368  | 78.88732  | 79.67139  | 80.05335  |

#### Table 1: Story displacement in X- Direction

The table shows the millimeter-based X-direction story displacements for a 30-story skyscraper under different bracing conditions. Brace X, Brace O, Brace K, and Brace V all register a displacement of 0 mm at the base level, matching the brace-free structure. But as the structure rises, some notable distinctions become apparent.

For example, the displacement values for each type of brace at the thirty-story level are as follows: Braces O (65.82011 mm), K (58.1368 mm), V (80.05335 mm), and X (58.50554 mm). At the same level, the braces-free building reports a displacement of 82.39951 mm. There are differences between the brace types throughout the storeys, which suggests that they have different levels of success in preventing lateral movement inside the building.

|          |                  |          | STO      | RY DISPLACE<br>mm | MENT in  |           |           |           |
|----------|------------------|----------|----------|-------------------|----------|-----------|-----------|-----------|
| stories  | without<br>brace | Brace X  | Brace O  | brace K           | brace V  | brace X-O | brace K-O | brace V-O |
| BASE     | 0                | 0        | 0        | 0                 | 0        | 0         | 0         | 0         |
| story 1  | 1.466076         | 1.104029 | 1.465136 | 1.232884          | 1.0939   | 1.195216  | 1.307881  | 1.175908  |
| story 2  | 4.527426         | 3.011924 | 4.525541 | 3.522477          | 2.988568 | 3.526655  | 3.924925  | 3.482655  |
| story 3  | 8.253767         | 5.122304 | 8.244076 | 6.116401          | 5.087249 | 6.29605   | 7.038714  | 6.235462  |
| story 4  | 12.26815         | 7.326742 | 12.24701 | 8.837494          | 7.281279 | 9.299926  | 10.38727  | 9.23027   |
| story 5  | 16.41543         | 9.600555 | 16.37991 | 11.62245          | 9.545645 | 12.46718  | 13.86772  | 12.39575  |
| story 6  | 20.62916         | 11.93357 | 20.57756 | 14.46333          | 11.86998 | 15.76518  | 17.44667  | 15.69754  |
| story 7  | 24.87806         | 14.31805 | 24.80916 | 17.34094          | 14.24638 | 19.1713   | 21.09649  | 19.11268  |
| story 8  | 29.14449         | 16.74653 | 29.05733 | 20.25594          | 16.66729 | 22.66719  | 24.80749  | 22.62149  |
| story 9  | 33.41581         | 19.21144 | 33.3097  | 23.19257          | 19.12502 | 26.23526  | 28.56028  | 26.20605  |
| story 10 | 37.68087         | 21.705   | 37.55511 | 26.14998          | 21.61169 | 29.85911  | 32.34699  | 29.84895  |
| story 11 | 41.92866         | 24.21919 | 41.78282 | 29.11311          | 24.11917 | 33.52245  | 36.14924  | 33.53348  |
| story 12 | 46.14774         | 26.74573 | 45.98121 | 32.07897          | 26.63909 | 37.20947  | 39.95843  | 37.2431   |
| story 13 | 50.32599         | 29.27608 | 50.13854 | 35.03292          | 29.16283 | 40.90449  | 43.75634  | 40.96168  |
| story 14 | 54.45054         | 31.80142 | 54.24166 | 37.96991          | 31.68148 | 44.59197  | 47.53328  | 44.67311  |
| story 15 | 58.50776         | 34.31267 | 58.27744 | 40.87558          | 34.18587 | 48.25659  | 51.27106  | 48.3616   |
| story 16 | 62.48323         | 36.80048 | 62.231   | 43.74295          | 36.66654 | 51.88288  | 54.95879  | 52.01129  |
| story 17 | 66.36172         | 39.25522 | 66.08782 | 46.55787          | 39.1138  | 55.4558   | 58.5783   | 55.6066   |
| story 18 | 70.12724         | 41.66701 | 69.83129 | 49.31153          | 41.51768 | 58.95991  | 62.11751  | 59.13183  |
| story 19 | 73.76302         | 44.02573 | 73.44549 | 51.98992          | 43.86795 | 62.38044  | 65.55833  | 62.57165  |
| story 20 | 77.25153         | 46.32103 | 76.91211 | 54.58254          | 46.15418 | 65.70206  | 68.88751  | 65.91055  |
| story 21 | 80.57449         | 48.54233 | 80.2139  | 57.0755           | 48.36568 | 68.91043  | 72.08713  | 69.13359  |
| story 22 | 83.71287         | 50.67887 | 83.33089 | 59.45677          | 50.49161 | 71.99052  | 75.14294  | 72.22562  |
| story 23 | 86.64702         | 52.71972 | 86.24463 | 61.71247          | 52.52092 | 74.92863  | 78.03731  | 75.17235  |
| story 24 | 89.35668         | 54.65381 | 88.9337  | 63.82931          | 54.44244 | 77.71037  | 80.75517  | 77.95927  |
| story 25 | 91.82129         | 56.46995 | 91.37897 | 65.79336          | 56.24487 | 80.32307  | 83.27945  | 80.57311  |
| story 26 | 94.02063         | 58.15692 | 93.55877 | 67.59047          | 57.91686 | 82.75341  | 85.59473  | 83.00044  |
| story 27 | 95.93628         | 59.70353 | 95.45628 | 69.20703          | 59.44713 | 84.99016  | 87.68536  | 85.22948  |
| story 28 | 97.55548         | 61.09921 | 97.05697 | 70.6303           | 60.82499 | 87.02141  | 89.53788  | 87.24824  |
| story 29 | 98.88033         | 62.33656 | 98.3645  | 71.85449          | 62.043   | 88.83646  | 91.14405  | 89.04601  |
| story 30 | 99.95191         | 63.42772 | 99.41799 | 72.89987          | 63.11358 | 90.42125  | 92.51187  | 90.61055  |

| Table 2: Story | Displacement i | in Y | Direction |
|----------------|----------------|------|-----------|
|----------------|----------------|------|-----------|

- Variations are seen in the Y-direction displacements for every type of brace spanning 30 stories, with the building without braces showing a displacement of 0 mm.
- Brace X (63.42772 mm), Brace O (72.89987 mm), Brace K (63.11358 mm), and Brace V (90.61055 mm) have displacements in millimeters at the thirty-story level, whereas the unbraced building reaches 99.95191 mm.
- These variations show that different brace types are more or less effective at controlling vertical displacement inside the structure.

## **Results for 12 story building**

|         |                  |          | STORY    | DISPLACEM | ENT in mm |           |           |           |
|---------|------------------|----------|----------|-----------|-----------|-----------|-----------|-----------|
| stories | without<br>brace | Brace X  | Brace O  | brace K   | brace V   | brace X-O | brace K-O | brace V-C |
| BASE    | 0                | 0        | 0        | 0         | 0         | 0         | 0         | 0         |
| story 1 | 2.896858         | 1.617427 | 2.740129 | 2.23264   | 1.591894  | 1.931152  | 2.131737  | 1.584249  |
| story 2 | 7.876273         | 3.655739 | 7.46137  | 5.230154  | 3.608613  | 4.788816  | 5.266533  | 4.014822  |
| story 3 | 13.27091         | 5.747    | 12.56156 | 8.242999  | 5.683555  | 8.006064  | 8.703365  | 6.801395  |
| story 4 | 18.69903         | 7.885139 | 17.68618 | 11.2946   | 7.808919  | 11.50839  | 12.24831  | 9.865902  |
| story 5 | 24.02998         | 10.0332  | 22.7127  | 14.30702  | 9.94672   | 15.19724  | 15.91367  | 13.11465  |
| story 6 | 29.17294         | 12.15202 | 27.54855 | 17.25721  | 12.05674  | 18.98086  | 19.55118  | 16.45898  |
| story 7 | 34.03255         | 14.19784 | 32.10488 | 20.0665   | 14.09419  | 22.7651   | 23.13586  | 19.80977  |
| story 8 | 38.49993         | 16.12259 | 36.26572 | 22.68319  | 16.00997  | 26.45807  | 26.53859  | 23.07888  |
| story 9 | 42.45068         | 17.87404 | 39.91881 | 25.02464  | 17.7508   | 29.971    | 29.70207  | 26.18255  |
| story10 | 45.74448         | 19.39636 | 42.91606 | 27.01473  | 19.25974  | 33.21656  | 32.51381  | 29.03718  |
| story11 | 48.22036         | 20.62933 | 45.13986 | 28.56309  | 20.47537  | 36.11886  | 34.89227  | 31.57057  |
| story12 | 49.77254         | 21.52098 | 46.50893 | 29.60036  | 21.34495  | 38.53049  | 36.69895  | 33.64774  |

## Table 3: Story displacement in X- Direction for 12 story

- Different brace kinds have different millimeter displacements; in the absence of braces, the building starts at 0 mm.
- Brace X (21.52098 mm), Brace O (46.50893 mm), Brace K (29.60036 mm), and Brace V (33.64774 mm) have displacement values in millimeters at the 12th level, whereas the unbraced building reaches 49.77254 mm.
- These variations highlight how different brace types are in terms of how well they regulate lateral movement within the 12-story building.

## **Results for 20 story building**

|         |                  |          | STO      | RY DISPLAC<br>in mm | EMENT    |           |           |           |
|---------|------------------|----------|----------|---------------------|----------|-----------|-----------|-----------|
| stories | without<br>brace | Brace X  | Brace O  | brace K             | brace V  | brace X-O | brace K-O | brace V-O |
| BASE    | 0                | 0        | 0        | 0                   | 0        | 0         | 0         | 0         |
| story 1 | 1.219501         | 1.16963  | 1.221068 | 1.107672            | 1.009482 | 1.263609  | 1.368529  | 1.355517  |
| story 2 | 3.759595         | 3.174564 | 3.765244 | 3.168614            | 2.774986 | 3.710262  | 4.090138  | 4.04794   |
| story 3 | 6.840916         | 5.369345 | 6.847388 | 5.516887            | 4.726553 | 6.589973  | 7.308007  | 7.230543  |
| story 4 | 10.14464         | 7.635269 | 10.15022 | 7.959042            | 6.750771 | 9.681099  | 10.73792  | 10.62404  |
| story 5 | 13.53537         | 9.942254 | 13.53866 | 10.44724            | 8.818148 | 12.90259  | 14.26903  | 14.11913  |
| story 6 | 16.95002         | 12.27473 | 16.95021 | 12.95085            | 10.91366 | 16.21299  | 17.85529  | 17.67041  |
| story 7 | 20.35314         | 14.61872 | 20.34984 | 15.46021            | 13.02408 | 19.58054  | 21.46213  | 21.24335  |
| story 8 | 23.71899         | 16.95954 | 23.71177 | 17.95444            | 15.13564 | 22.97642  | 25.06541  | 24.81401  |
| story 9 | 27.02436         | 19.28144 | 27.01317 | 20.42231            | 17.23368 | 26.37194  | 28.63629  | 28.35355  |
| story10 | 30.24568         | 21.56747 | 30.23013 | 22.84222            | 19.30251 | 29.73802  | 32.14955  | 31.83699  |
| story11 | 33.35787         | 23.79949 | 33.33812 | 25.19891            | 21.32541 | 33.04532  | 35.57463  | 35.23383  |
| story12 | 36.33393         | 25.95824 | 36.30954 | 27.46923            | 23.28469 | 36.26352  | 38.88282  | 38.51569  |
| story13 | 39.14481         | 28.02328 | 39.11613 | 29.63396            | 25.16164 | 39.36245  | 42.04121  | 41.64979  |
| story14 | 41.75947         | 29.97309 | 41.72597 | 31.66787            | 26.93665 | 42.31071  | 45.01756  | 44.60427  |
| story15 | 44.14519         | 31.78511 | 44.10737 | 33.54739            | 28.5892  | 45.07777  | 47.77692  | 47.34443  |
| story16 | 46.26828         | 33.43581 | 46.22546 | 35.2464             | 30.09796 | 47.63177  | 50.28432  | 49.83572  |
| story17 | 48.09602         | 34.9009  | 48.04884 | 36.73912            | 31.44101 | 49.94287  | 52.50459  | 52.04329  |
| story18 | 49.60136         | 36.15622 | 49.54882 | 38.00084            | 32.5967  | 51.98077  | 54.40485  | 53.93469  |
| story19 | 50.77433         | 37.18218 | 50.71694 | 39.01518            | 33.54795 | 53.72067  | 55.96331  | 55.48824  |
| story20 | 51.65168         | 37.9909  | 51.58822 | 39.80224            | 34.306   | 55.14891  | 57.19172  | 56.71511  |

Table 4: Story displacement in X Direction for 20 story

• The X-direction displacements for each type of brace, starting at 0 mm without braces, vary over 20 storeys.

- The building without braces reaches 51.65168 mm, but measurements in millimeters at the 20th floor show: Brace X (37.9909 mm), Brace O (39.80224 mm), Brace K (34.306 mm), and Brace V (56.71511 mm).
- These variations highlight how different brace types work differently to control lateral movement inside the 20-story building.

|          |          |          | STORY    | DISPLACEM | ENT in mm |           |           |           |
|----------|----------|----------|----------|-----------|-----------|-----------|-----------|-----------|
|          | without  |          |          |           |           |           |           |           |
| stories  | brace    | Brace X  | Brace O  | brace K   | brace V   | brace X-O | brace K-O | brace V-O |
| BASE     | 0        | 0        | 0        | 0         | 0         | 0         | 0         | 0         |
| story 1  | 1.511179 | 1.16963  | 1.221068 | 1.289125  | 1.009482  | 1.263609  | 1.2796    | 1.042888  |
| story 2  | 4.657621 | 3.174564 | 3.765244 | 3.667679  | 2.774986  | 3.710262  | 3.833937  | 3.094193  |
| story 3  | 8.471725 | 5.369345 | 6.847388 | 6.344513  | 4.726553  | 6.589973  | 6.859232  | 5.532568  |
| story 4  | 12.55752 | 7.635269 | 10.15022 | 9.126111  | 6.750771  | 9.681099  | 10.08774  | 8.166443  |
| story 5  | 16.74696 | 9.942254 | 13.53866 | 11.94474  | 8.818148  | 12.90259  | 13.41252  | 10.92207  |
| story 6  | 20.96189 | 12.27473 | 16.95021 | 14.78255  | 10.91366  | 16.21299  | 16.7906   | 13.7622   |
| story 7  | 25.15858 | 14.61872 | 20.34984 | 17.61571  | 13.02408  | 19.58054  | 20.18814  | 16.65726  |
| story 8  | 29.30541 | 16.95954 | 23.71177 | 20.43283  | 15.13564  | 22.97642  | 23.58308  | 19.58165  |
| story 9  | 33.3739  | 19.28144 | 27.01317 | 23.21121  | 17.23368  | 26.37194  | 26.94747  | 22.50907  |
| story 10 | 37.33513 | 21.56747 | 30.23013 | 25.93532  | 19.30251  | 29.73802  | 30.2581   | 25.41387  |
| story 11 | 41.15831 | 23.79949 | 33.33812 | 28.5807   | 21.32541  | 33.04532  | 33.48566  | 28.26957  |
| story 12 | 44.81025 | 25.95824 | 36.30954 | 31.12722  | 23.28469  | 36.26352  | 36.60349  | 31.04948  |
| story 13 | 48.25519 | 28.02328 | 39.11613 | 33.54841  | 25.16164  | 39.36245  | 39.58026  | 33.72672  |
| story 14 | 51.45486 | 29.97309 | 41.72597 | 35.81977  | 26.93665  | 42.31071  | 42.38584  | 36.27372  |
| story 15 | 54.3689  | 31.78511 | 44.10737 | 37.91276  | 28.5892   | 45.07777  | 44.98716  | 38.66351  |
| story 16 | 56.95575 | 33.43581 | 46.22546 | 39.79913  | 30.09796  | 47.63177  | 47.3514   | 40.86828  |
| story 17 | 59.17502 | 34.9009  | 48.04884 | 41.44895  | 31.44101  | 49.94287  | 49.44546  | 42.86188  |
| story 18 | 60.99336 | 36.15622 | 49.54882 | 42.83387  | 32.5967   | 51.98077  | 51.23852  | 44.61811  |
| story 19 | 62.39877 | 37.18218 | 50.71694 | 43.93488  | 33.54795  | 53.72067  | 52.71032  | 46.1158   |
| story 20 | 63.43745 | 37.9909  | 51.58822 | 44.77469  | 34.306    | 55.14891  | 53.87208  | 47.34427  |

## Table 5: Story displacement in Y Direction for 20 story

- For various brace types, the Y-direction displacements, expressed in millimeters, fluctuate between floors; the unbraced building's base measurement is 0 mm.
- Brace X (37.9909 mm), Brace O (44.77469 mm), Brace K (34.306 mm), and Brace V (47.34427 mm) have displacement values in millimeters at the 20th floor, whereas the unbraced building reaches 63.43745 mm.
- These versions demonstrate how different brace types work differently to control vertical displacement inside the 20-story building.

## **Time Period**

|      |          |          |          | TIME PERIOI | )         |           |           |           |
|------|----------|----------|----------|-------------|-----------|-----------|-----------|-----------|
| MODE | without  | Brace X  | Brace O  | brace K     | brace V   | brace X-O | brace K-O | brace V-O |
| S    | brace    | 0.050001 | 2 221552 | 1.2.12000   | 0.0500.10 | 1.450252  | 1.625665  | 1 101100  |
| 1    | 2.352178 | 0.978821 | 2.331773 | 1.243898    | 0.972243  | 1.459252  | 1.635667  | 1.421132  |
| 2    | 2.352178 | 0.978821 | 2.331773 | 1.242843    | 0.972243  | 1.459252  | 1.634423  | 1.421132  |
| 3    | 2.230874 | 0.591565 | 2.181221 | 0.801786    | 0.59137   | 0.967325  | 1.143086  | 0.937668  |
| 4    | 0.76673  | 0.324126 | 0.760534 | 0.411536    | 0.325003  | 0.448494  | 0.522966  | 0.448477  |
| 5    | 0.76673  | 0.324126 | 0.760534 | 0.411173    | 0.325003  | 0.448494  | 0.522447  | 0.448477  |
| 6    | 0.72642  | 0.200055 | 0.711375 | 0.267776    | 0.200039  | 0.302326  | 0.370079  | 0.30203   |
| 7    | 0.440123 | 0.197878 | 0.437051 | 0.238914    | 0.197808  | 0.239211  | 0.289629  | 0.240383  |
| 8    | 0.440123 | 0.190264 | 0.437051 | 0.238679    | 0.190297  | 0.239211  | 0.289258  | 0.240383  |
| 9    | 0.41705  | 0.190264 | 0.409734 | 0.200119    | 0.190297  | 0.200134  | 0.205929  | 0.200125  |
| 10   | 0.29886  | 0.185622 | 0.297106 | 0.190399    | 0.186188  | 0.19058   | 0.201514  | 0.190561  |
| 11   | 0.29886  | 0.185622 | 0.297106 | 0.190398    | 0.186188  | 0.19058   | 0.20125   | 0.190561  |
| 12   | 0.281858 | 0.180871 | 0.277671 | 0.18133     | 0.180901  | 0.181314  | 0.200174  | 0.181319  |

| Table 6: Time period in X Direction for 12 stor | Table 6: | Time | period | in | Х | Direction | for | 12 story |
|-------------------------------------------------|----------|------|--------|----|---|-----------|-----|----------|
|-------------------------------------------------|----------|------|--------|----|---|-----------|-----|----------|

- The time intervals, expressed in seconds, varies for every story and for every type and style of brace.
- The time periods span the different brace types (Brace X, Brace O, Brace K, Brace V, Brace X-O, Brace K-O, Brace V-O) and the unbraced building (without brace) over the 12 modes.
- The time periods display different values for every mode, which indicates how the various bracing arrangements within the 12-story building affect the structural reactions with regard to lateral vibration.

|      |          |          |          | TIME PERIO | D        |           |           |           |
|------|----------|----------|----------|------------|----------|-----------|-----------|-----------|
| MODE | without  | Brace X  | Brace O  | brace K    | brace V  | brace X-O | brace K-O | brace V-O |
| S    | brace    | Diace A  | Brace O  | blace K    | Diace v  | Diace A-O | Diace K-O | blace v-O |
| 1    | 2.473309 | 1.522237 | 2.466805 | 1.800355   | 1.516927 | 2.098784  | 2.215681  | 2.213661  |
| 2    | 2.473309 | 1.522237 | 2.466805 | 1.80001    | 1.516927 | 2.098784  | 2.215681  | 2.088195  |
| 3    | 2.250839 | 0.980273 | 2.233763 | 1.259332   | 0.979901 | 1.575123  | 1.760136  | 1.655361  |
| 4    | 0.800848 | 0.49632  | 0.799042 | 0.587432   | 0.496916 | 0.663607  | 0.71148   | 0.711115  |
| 5    | 0.800848 | 0.49632  | 0.799042 | 0.587314   | 0.496916 | 0.663607  | 0.71148   | 0.66424   |
| 6    | 0.731622 | 0.32581  | 0.726675 | 0.417183   | 0.325673 | 0.502407  | 0.570322  | 0.534154  |
| 7    | 0.453019 | 0.280482 | 0.452306 | 0.334249   | 0.280983 | 0.363431  | 0.396708  | 0.396663  |
| 8    | 0.453019 | 0.280482 | 0.452306 | 0.334174   | 0.280983 | 0.363431  | 0.396708  | 0.364074  |
| 9    | 0.4185   | 0.199458 | 0.41649  | 0.247225   | 0.199243 | 0.27706   | 0.321935  | 0.297848  |
| 10   | 0.304724 | 0.196204 | 0.304421 | 0.231199   | 0.196499 | 0.246495  | 0.269332  | 0.269341  |
| 11   | 0.304724 | 0.196204 | 0.304421 | 0.231149   | 0.196499 | 0.246495  | 0.269332  | 0.246958  |
| 12   | 0.281632 | 0.194346 | 0.280616 | 0.199571   | 0.194245 | 0.199647  | 0.221242  | 0.204808  |

#### Table 7: Time period for 12 story

- For every story of the 12-story building, there are distinct brace kinds and modes with varying time periods, expressed in seconds.
- Time durations for the unbraced building (without brace) and several types of braces (Brace X, Brace O, Brace K, Brace V, Brace X-O, Brace K-O, and Brace V-O) vary amongst the 12 modes.
- Because the 12-story structure has diverse bracing arrangements and modes, these time period differences show distinct structural reactions to lateral vibration.

#### Modes shapes of 12 story building

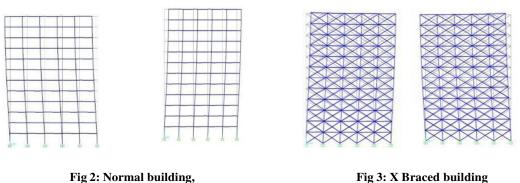



Fig 3: X Braced building

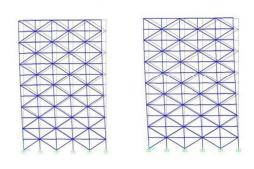



Fig 3: K Braced building

- Brace Type Influence: The time durations for each mode vary for different brace types (Brace X, Brace O, Brace K, Brace V, Brace X-O, Brace K-O, and Brace V-O), exhibiting differing structural reactions to lateral vibration.
- Mode-Specific Variations: Under various circumstances and bracing configurations, the building's lateral vibration response exhibits a variety of behaviors, each mode presenting unique time period values.
- Braced vs. Unbraced: The building that is brace-free, or without bracing, typically exhibits longer ٠ durations than the configurations that are braced. This highlights how well braces work to modify the vibration characteristics of the building.
- Mode Dependency: The subtle effects of bracing on individual vibration modes are indicated by the differing time period values that distinct vibration modes display across various brace types.
- constant Patterns: Although the durations differ for different modes and brace types, there are some constant patterns that show how each brace type affects the way the building responds to lateral vibration. These patterns shed light on how effective the braces are at controlling structural motion.

## 5. Conclusions

Drawing on the findings and outcomes of this investigation, the subsequent deductions may be made:

- The research of several bracing methods revealed that the K brace (65.8 mm) is less effective than the X (58.5 mm) and V (58.13 mm) braces. This is because the displacement caused by the K brace is 1.2 times more than that of the V brace. The K-O brace combination works well since it has a smaller displacement than other combinations like the V-O brace.framework.
- The aforementioned findings indicate that concentrically braced frames performed well in terms of ductility. With framed constructions, concentrically bracing systems are simply retrofittable and provide good control over the different reactions of the structures, including tale drift and displacement,
- Story displacement is also considerably reduced as compared with an unbraced structure of 82 mm. As an example, X bracing reduces up to 58 mm, V bracing reduces up to 58 mm, and K bracing reduces up to 65 mm. It is discovered that X bracing and V bracing work better to control narrative displacements.
- In order to resist lateral forces, this study presented a novel form of bracing system called the O-Grid bracing system, which is a braced frame with a circular brace attached to a moment-resistant frame (MRF) with a joint connection. Unlike other braces, O-Grid bracing may be used in any part of the structure without compromising architectural form or space because of its unique structure and form. Both stiff and ductile describe the O-Grid bracing system.
- In comparison with other systems, the MRF model has higher story drift, whereas the x-bracing model has less. narrative drift in all models is under the code-mandated limit, with the k-O model combination having an 11% lower narrative drift (0.00047) than other models.

The provision of the K-O grid combination is more cost-effective and efficient than offering other combinations, and individual O grid is less effective other bracing combinations.

## Refrences

- Harsha C.S., Nikhil R. (2020), "Seismic Strengthening of Steel Buildings using Bracings". 9 International Research Journal of Engineering and Technology (IRJET) volume:07, Issue: 07, July 2020, PP 3359-3365.
- [2] Shahanas Shaji1, Ramesh Kumar (2019), "Analysis and Performance of O-Grid Lateral Bracing System", International Research Journal of Engineering and Technology (IRJET), Volume: 06 Issue: 05 | May 2019,PP 4813-4817.
- [3] **K. Kanishkavya1 (2019)**, Analysis of Frames with and without Knee bracing for laterals International Research Journal of Multidisciplinary Tecnovation (IRJMT), Volume: 03 Issue: 04 November 2019 PP 698-706.
- [4] Eber Alberto Godínez-Domínguez and Arturo Tena-Colunga (2019), "Behavior of ductile steel X-braced RC frames in seismic zones", Earthquake Engineering and Engineering Vibration. volume 18, Isue No: 04, PP 845–869.
- [5] Maryam Boostani, Omid Rezaifar, Majid Gholkani (2018), Introduction and seismic performances, investigation of the proposed lateral bracing system called "OGrid"(Elsevier), Volume 18, Issue 4, PP 738-746.
- [6] S.P. Sharma and J.P. Bhandari (2015), Literature Review on the Seismic Performance of Multi-Storey Building with Different Locations of Shear Wall and Dia-gridl, International Journal of Science and Research (IJSR), Volume 6 Issue 6, June 2015 PP 583-590.
- [7] Zhixin Wang (2012), Analysis of the Seismic Performance of RC Frame Structures with Different Types of Bracingsl, APPlied Mechanics and Materials, volume: 03, Issue no: 08, PP: 2350-8906.
- [8] **Tremblay (2003),** "Seismic Response of concentrically braced Steel Frames made with rectangular Hollow bracing Members" (ASCE). Vol. 38,Issue Number: 12, PP 78-89.
- [9] Kazuhiko Kasai (2009), "Seismic Retrofit Using Rocking Walls and Steel Dampers, Conference: ATC and SEI Conference on Improving the Seismic Performance of Existing Buildings and Other Structures, Volume 7, Issue 2, PP: 1-13.
- [10] Huanjun Jiang Bo Fu and Laoer Liu (2012) "Study on seismic performance of a super- tall steel-concrete hybrid structurel, Tall and special building journal Volume:23, Issue: 5, Aug-2012, PP 334-349.

- [11] Behruz Bagheri Azar and Mohammad Reza Bagerzadeh Karimi (2012), Evaluating the Seismic Performance of High-Rise Steel Structures with Moment- Resistance Framesl, International Journal of Engineering Innovation & Research Volume 2, Issue 3,PP: 326-330.
- [12] Paul W. Richards (2014) "Efficiently Implementing Genetic Optimization with Nonlinear Response History Analysis of Taller Buildings", Journal of Structural Engineering 140(8):A4014011, Volume 140, Issue: 08, PP: 140-152.
- [13] Paul W. Richards (2012), Seismic Performance of Buckling-Restrained Braced Frames with Eccentric Configurations, 2012 Journal of Structural Engineering, Volume: 138, Issue:3, PP: 345-353.
- [14] M. Ali and Kyoung Sun Moon (2007), Structural development in Tall Buildings: Current Trends And Future Prospects, Architectural Science Review, Volume: 50, Issue:3, PP: 205- 223.
- [15] Mohamed Noureldin and Jinkoo Kim (2023), Simplified Life Cycle Cost Estimation of Low-Rise Steel Buildings Using Fundamental Period, Sustainability 2023, Volume: 01, Issue: 15, PP: 1-23